1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
| import numpy as np import pandas as pd
dataset = pd.read_csv('dataset/1.csv') X = dataset.iloc[:, :-1].values; Y = dataset.iloc[:, 3].values;
from sklearn.preprocessing import Imputer imputer = Imputer(missing_values="NaN",strategy="mean",axis=0) imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3])
from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features=[0]) X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder() Y = labelencoder_Y.fit_transform(Y)
from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
print(X_train, X_test, Y_train, Y_test)
from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.fit_transform(X_test)
print(X_train) print(X_test)
|