1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| import pandas as pd import numpy as np
dataset = pd.read_csv('dataset/50_Startups.csv') X = dataset.iloc[:, :-1].values Y = dataset.iloc[:, 4].values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelEncoder = LabelEncoder() X[:, 3] = labelEncoder.fit_transform(X[:, 3]) onehotencoder = OneHotEncoder(categorical_features = [3]) X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, Y_train)
y_pred = regressor.predict(X_test);
print(y_pred)
|