1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
import numpy as np import matplotlib.pyplot as plt import pandas as pd
dataset = pd.read_csv('dataset/Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values Y = dataset.iloc[:, 4].values
from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25 ,random_state = 0)
from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_train, Y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix cm = confusion_matrix(Y_test, y_pred)
from matplotlib.colors import ListedColormap X_set, Y_set = X_train, Y_train X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01), np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X1.max()) plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np.unique(Y_set)): plt.scatter(X_set[Y_set==j,0],X_set[Y_set==j,1], c = ListedColormap(('red', 'green'))(i), label=j)
plt.title('LOGISTIC(Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') plt.legend() plt.show()
X_set, Y_set = X_test, Y_test X1,X2=np.meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01), np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X1.max()) plt.ylim(X2.min(),X2.max()) for i,j in enumerate(np. unique(Y_set)): plt.scatter(X_set[Y_set==j,0],X_set[Y_set==j,1], c = ListedColormap(('red', 'green'))(i), label=j)
plt. title(' LOGISTIC(Test set)') plt. xlabel(' Age') plt. ylabel(' Estimated Salary') plt. legend() plt. show()
|