Bermu

100-day-of-7 ML 🐅

2018-12-28

K-NN 实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#encoding=utf-8
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# import dataset
dataset = pd.read_csv('dataset/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

# data split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

# zoomin features
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# k-NN 训练
from sklearn.neighbors import KNeighborsClassifier
# n_neighbors 查找邻居数量
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)

# predict test dataset
y_pred = classifier.predict(X_test)

# output confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

print(cm)
使用支付宝打赏
使用微信打赏

若你觉得我的文章对你有帮助,欢迎点击上方按钮对我打赏

扫描二维码,分享此文章